AI 공부 도전기

컴퓨터비전, 머신러닝, 딥러닝을 이용한 의료영상분석 1-3 Introduction to medical image analysis 2

본 내용은 Edwith의 컴퓨터비전, 머신러닝, 딥러닝을 이용한 의료영상분석을 요약 정리한 내용으로 DGIST 박상현 교수님과 Edwith, STAR-MOOC에 그 저작권이 있음을 미리 공지합니다.


URL : https://www.edwith.org/medical-20200327/lecture/63119/

Artificial Intelligent

1950년도

Loop[Problem -> Rule -> Evaluation -> Error Analysis] -> (Evaluation) Launching


Machine Learning 1980년도

Rule 대신 Data 기반 Machine Learning의 Loop

Data Mining : Machine Learning Solution 분석 -> Discovery 


Classification

In Medical : Normal vs Alzheimer's Disease


Segmentation

자율주행


Enhancement

해상도를 높게 바꿔줌 Super Resolution

의료 영상에서도 Quality를 높이기위한 기법 제안


Registration

뒤틀린 영상 사진(Warp Image)을 잘 맞게 맞춰줌

의료에서도 

Reference Image

Target Image -> Co-Registered Image

Difference Image -> Difference Image


수업 영상 캡쳐수업 영상 캡쳐

Imagenet : ILSVRC

DeepLearning의 메인 재료인 빅데이터 Image Database를 제공.

GPU : Parallel Computing 성능 향상, 처리속도 향상


BigData + GPU가 가져온 Breakthrough


A Roadmap for Foundational Research on Artificial Intelligence in Medical Imaging, Radiology 2019 Figure 1

A Roadmap for Foundational Research on Artificial Intelligence in Medical Imaging, Radiology 2019


MIA : Medical Image Analysis


앞으로 배울 내용 정리표


 

 Conventional Methods

Deep Learning Method 

Classification

 Logistic Regression

Neural Network 

Support Vector Machine 

Deep Neural Network

Convolutional Neural Network  

Segmentation

 Thresholding

Region Growing

Graph Cut

Active Contour Model

Active Shape Model

FCN

U-Net

DeepLab

Enhancement

Normalization

Histogram Equalization

Filtering

Dictionary Learning

SRCNN

GAN

SRGAN 

Registration

Transformation Matrix

Iterative Closest Point(ICP)

Non Rigid ICP

Deformable Models

FlowNet

CNN for Registration



공유하기

facebook twitter kakaoTalk kakaostory naver band
loading